Jan Krouželka, Igor Linhart* and Tomáš Tobrman

Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technicka 1905, CZ-166 28
Prague, Czech Republic; E-mail: linharti@vscht.cz Received August 27, 2007

Abstract

3-(2-Hydroxy-2-phenylethyl)- and 3-(2-hydroxy-1-phenylethyl)adenine, DNA adducts derived from styrene, along with their 9 -substituted analogues were prepared by alkylation of 8 -bromoadenine with corresponding allyl-protected bromohydrins followed by a new deallylation procedure using tetrakis(triphenylphosphine)palladium catalyzed reductive cleavage by poly(methylhydrosiloxane) in the presence of p-toluenesulphonic acid. This novel procedure proved to be useful for purine derivatives, which were resistant to other deallylation protocols. Structure of positional isomers was assigned using 2D NMR experiments HMBC and HMQC.

J. Heterocyclic Chem., 45, 789 (2008).

INTRODUCTION

Alkyl-, aryl- and aralkyladenines play an important role as bioactive compounds [1] and tools for the detection and evaluation of DNA lesions [2,3]. Among them, N3 substituted adenines are nucleobase DNA adducts formed by covalent binding of electrophiles to adenine in the DNA which are cleaved off spontaneously from the DNA strand and finally excreted in urine. Therefore, they can serve as urinary biological markers of exposure to industrial and environmental mutagens and genotoxic carcinogens for early diagnosis of damage to DNA [2]. For styrene 7,8oxide (1), a reactive electrophilic metabolite of styrene, N3 adenine adducts comprised 4% of the total alkylation of DNA when double stranded DNA was alkylated at physiological pH , i.e., N3 adenine adducts are the second most abundant DNA adducts derived from styrene [4]. However, no N3 adenine adducts were formed by the reaction of $\mathbf{1}$ with 2^{\prime}-deoxy-adenosine-3'-phosphate [4], adenosine [5] or 2'-deoxyadenosine [6]. Therefore, unlike other styrene derived DNA adducts, N3 adenine adducts are not accessible by direct reactions of styrene 7,8-oxide with nucleosides or nucleotides.
Adenine itself reacts with alkylating agents in the presence of a base rather non-selectively to yield a mixture of products alkylated at various nitrogens, N9 being usually the most prominent site of attack [7-9].

In this study we describe a synthesis of both N3 and N9 substituted adenines derived from 1, the former ones as biomarkers of DNA damage caused by styrene exposure, the latter as suitable internal standards for the development of analytical methods to determine adenine adducts in urine. Because the primary aim was to obtain pure samples of products to be used as analytical standards we focused on the product purity rather than to strive for maximum yields.

RESULTS AND DISCUSSION

Styrene 7,8-oxide is a weak electrophile reacting with nucleophiles non-selectively at both α - and β-position giving rise to two isomeric products. In our previous work we found that allyl and benzyl protected bromohydrins $\mathbf{2 a , b}$ and 3a,b can be used as suitable synthetic equivalents of $\mathbf{1}$ to achieve selective alkylation (Scheme 1) $[10,11]$. In addition, benzyl-protected triflate 2 -benzyloxy-2-phenylethyl triflate (4) [12] was tested as a more reactive alkylating reagent.

Although in the presence of a base, the alkylation of adenine is directed mainly to the N9 position [7] a selective alkylation at N3 was observed when the alkylation of adenine by reactive allylic or benzylic halides was performed in dimethylacetamide and no base except adenine itself was employed [13]. However, our attempts to alkylate adenine with allyl protected bromohydrins 2a and 3a at the same reaction conditions led to a mixture of at least four products as detected by

Scheme 1

PG = allyl or benzyl; (i) NuH followed by deprotection

Scheme 2

(i) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}, 50-100^{\circ} \mathrm{C}$

TLC and ${ }^{1} \mathrm{H}-\mathrm{NMR}$. Adenine itself could be alkylated in DMF at $125^{\circ} \mathrm{C}$ with non-protected 2-bromo-1phenylethanol (2) in the presence of 18-crown-6 and potassium carbonate as a base yielding 29% of $9-(2-$ hydroxy-2-phenylethyl)adenine (5) as the main and only isolated product. At least two by-products were detected by TLC.

Isomeric bromohydrin, 2-bromo-2-phenylethanol (3) did not react with adenine under the same reaction conditions but its allyl- and benzyl-protected derivatives

3a and $\mathbf{3 b}$ each gave a mixture of alkylated adenines of which corresponding protected 9-(2-hydroxy-1-phenyl-ethyl)- and 7-(2-hydroxy-1-phenylethyl)adenines ($\mathbf{6 a , b}$ and $\mathbf{7 a , b}$, respectively) were isolated.

To prepare both N3 and N9 substituted adenines we decided to use 8 -bromoadenine ($\mathbf{8}$) as a precursor of adenine, which after being alkylated can be converted easily to the adenine moiety by catalytic reduction of bromine. In a recent study, alkylation of $\mathbf{8}$ by 4-fluorobenzyl bromide gave N3- and N9-substituted products in nearly $1: 1$ ratio [14]. The alkylations of $\mathbf{8}$ with 2a,b and 3a,b (Scheme 2) were carried out in DMF using potassium carbonate as a base at temperatures between 50 and $100^{\circ} \mathrm{C}$.

The results are summarized in the Table 1. The alkylation proceeded at N 3 and N 9 position of the purine moiety giving two products, the N3 substituted derivatives being the major ones. Alkylation with 2a and 2b gave a mixture of two products, i.e., allyl- or benzylprotected 8-bromo-3-(2-hydroxy-2-phenylethyl)adenine (9) and 8-bromo-9-(2-hydroxy-2-phenylethyl)adenine (10).

Table 1
Alkylation of 8-Bromoadenine (8)

Reagent	$\mathrm{t}\left[{ }^{\circ} \mathrm{C}\right]$	Reaction time $[\mathrm{h}]$	Product ratio $3 \mathrm{~N}: 9 \mathrm{~N}^{\mathbf{a}}$	Yield [\%] $3 \mathrm{~N}+9 \mathrm{~N}$
2a	70	4^{b}	$85: 15$	45
2a	70	20	$71: 30$	39
2a	100	20	$67: 33$	55
2b	70	16	$80: 20$	25
2b	70	72	$65: 35$	57
2b	100	20	$60: 40$	69
3a	50	48	$67: 33$	80
3a	70	24	$62: 38$	90
3a	90	5	$65: 35$	62
3b	50	18	$55: 45$	62
3b	70	7	$60: 40$	63
3b	90	5	$60: 40$	65
4	r.t.	4	$40: 60$	84

[a] Product ratios were determined by integration of the $\mathrm{C}(2) \mathrm{H}$ signals in the NMR spectra. [b] The ratio of the reactants $2 \mathrm{a}: \mathbf{8}$ was $6: 1$ in this experiment.

The product ratio was temperature dependent, lower temperatures and shorter reaction times gave a better selectivity for the N3 alkylated products (Table 1). 2-Benzyloxy-2-phenylethyl triflate (4) [12] showed a higher reactivity than bromides but it gave predominantly the N9 substituted product $\mathbf{1 0 b}$ the ratio of $\mathbf{9 b}: \mathbf{1 0 b}$ being $2: 3$.
Protected bromohydrins 3a and 3b gave also corresponding N3 and N9 substituted products, i.e., allylor benzyl-protected 8-bromo-3-(2-hydroxy-1-phenylethyl)adenine (11a,b) and 8-bromo-9-(2-hydroxy-2-phenyl-ethyl)adenine (12a,b). Unlike for the phenethyl
bromides $\mathbf{2 a}$ and $\mathbf{2 b}$ alkylation product ratios for benzylic bromides 3a and 3b were not dependent on the reaction temperature in the range of $50-90^{\circ} \mathrm{C}$ (Table 1). When pure phenethyl derivatives $\mathbf{9 a}$ and $\mathbf{9 b}$ were treated with $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively, under the reaction conditions of alkylation, i.e., heating in DMF for 24 h at $100^{\circ} \mathrm{C}$ in the presence of potassium carbonate, no migration of the substituent form N3 to N9 was observed. Therefore, the temperature dependent selectivity of the alkylation cannot be attributed to a reversible alkylation [15].

Debenzylation of $\mathbf{9 b}, \mathbf{1 0 b}$ and 12b by hydrogenolysis with $10 \% \mathrm{Pd}$ on charcoal proceeded smoothly along with the reduction of bromine in the position 8 but 11b was cleaved to adenine at the same reaction conditions. Therefore, allyl-protected derivatives 9a-12a were used preferentially to prepare the target compounds.

Allylic groups in bromoadenines 9a - 12a were resistant to deallylation procedures such as cleavage with $\mathrm{NaBH}_{4} / \mathrm{I}_{2}$ [16], SmI_{2} [17], DIBAL with $\left[\mathrm{NiCl}_{2}(\mathrm{dppp})\right]$ as a catalyst [18] and PhSiH_{3} with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst [19]. Catalytic deallylation using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{ZnCl}_{2}$ and poly(methyl)hydrosiloxane (PMHS) [20] which we successfully applied previously to similar allyl-protected guanine derivatives [10,11], gave poor yields (10 \% at most) with bromoadenines 9a - 12a. However, when ZnCl_{2} was replaced by TsOH as a stronger acid, deallylation proceeded smoothly along with reduction of bromine in the position 8 (Scheme 3). Because isomeric N3- and N9-bromoadenines were more difficult to separate than the final deprotected product, mixtures of 9 and $\mathbf{1 0}$ or $\mathbf{1 1}$ and $\mathbf{1 2}$ were used as a starting material in most deprotection experiments. Final products were then separated by repeated column chromatography. So, pure 3-(2-hydroxy-2-phenylethyl)adenine (13) and 9-(2-4hy-

[^0]droxy-2-phenylethyl)adenine (5) were obtained by deallylation of a 3:1 mixture of 9a and 10a followed by separation of products. Similarly, deallylation of a $2: 1$ mixture of 11a and 12a yielded 3-(2-hydroxy-1phenylethyl)adenine (14) and 9-(2-hydroxy-1-phenyl-

Scheme 4

(i) $\begin{aligned} & \square \\ & \\ & \\ & 15 a, 16 a\end{aligned}$
(i)

(i)

15, 17, $X=H, Y=P h, R=H$
7, 16, 18, $X=P h, Y=H, R=H \quad a, R=$ allyl
(i) $\mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{4}, \mathrm{TsOH}, \mathrm{PMHS}, \mathrm{DMF}$
ethyl)adenine (6). This new deallylation procedure was also successfully applied to deprotection of N7-adenine derivative 7a as well as of a series of guanine derivatives, namely, 7-(2-allyloxy-2-phenylethyl)guanine (15a), 7-(2-allyloxy-1-phenylethyl)guanine (16a), 9-(2-allyloxy-2phenylethyl)guanine (17a) and 9-(2-allyloxy-1-phenylethyl)guanine (18a) (Scheme 4). The yields of deallylation are listed in the Table 2.

For guanine derivatives they ranged from 74-96\% and were slightly better than those previously reported (68$90 \%$) [11] with the catalytic system using ZnCl_{2} as an acid.

Table 2
Yields of Deallylation
Starting
Material
9a
11a
$9 \mathbf{a}+10 \mathbf{a}$
$11 \mathbf{+ 1 2 a}$
$7 \mathbf{a}$
$16 \mathbf{a}$
$17 \mathbf{a}$
$18 \mathbf{a}$
$19 \mathbf{a}$
Product(s)
13
14
$13+5$
$14+15$
7
16
17
18
19

Yield [\%]
55
45
60
$a+10 a$
$+12 a$
$4+15$
59
60
16a
$17 a$
$18 a$
19a
19
74
90
76

In the palladium complex catalyzed deallylation, coordination of the allylic π-electrons to palladium is essential to enable subsequent reductive cleavage of the allyl group. Basic nitrogen atoms in purines may coordinate to the transition metal and compete with the allylic π-electrons. Addition of an acid to the catalytic system seems to be necessary to prevent coordination of purine nitrogens to palladium. In the case of guanine derivatives ZnCl_{2} was sufficient to neutralize the purine moiety, whereas adenine derivatives required TsOH as a stronger acid to achieve the same effect.

Table 3
${ }^{13} \mathrm{C}$-NMR Chemical Shifts in ppm of Adenine Derivatives. Spectra were measured in CDCl_{\S} or ${ }^{\text {a) }}$ DMSO-d d_{6}.

Compound	C2	C4	C5	C6	C8	CH_{2}	CH	aromatic CH and C	$\underset{\text { (allyl) }}{\mathrm{CH}=\mathrm{CH}_{2}}$
$5^{\text {a }}$	152.3	149.6	118.5	155.9	141.3	50.3	70.7	$125.9,127.5,128.2,142.4$	---
6 a	152.4	149.6	118.7	156.0	139.7	$\begin{aligned} & 69.9, \\ & 71.0 \end{aligned}$	57.6	127.0, 128.0, 128.6, 138.0	$\begin{aligned} & 116.8, \\ & 134.7 \end{aligned}$
6b	153.1	150.5	119.7	155.1	140.0	$\begin{aligned} & 70.6, \\ & 73.6 \end{aligned}$	58.2	$\begin{aligned} & 127.3,127.9,128.1,128.6,129.0,129.3, \\ & 136.9,137.3 \end{aligned}$	---
7	152.3	151.8	111.7	160.2	144.8	63.3	62.2	127.1, 128.5, 129.2, 138.6	---
7 a	152.2	151.3	111.0	159.8	144.2	$\begin{aligned} & 70.5, \\ & 71.0 \end{aligned}$	59.3	$126.5,128.2,128.8,137.8$	$\begin{gathered} 117.0 \\ 134.5 \end{gathered}$
7b	152.6	151.7	112.6	160.1	145.1	$\begin{aligned} & 71.2, \\ & 73.9 \end{aligned}$	61.5	$\begin{aligned} & 126.9,128.0,128.5,128.7,129.7,129.8 \\ & 135.5,136,2 \end{aligned}$	---
9 a	143.8	150.7	122.2	153.2	141.7	$\begin{aligned} & 55.8 \\ & 70.0 \end{aligned}$	78.0	126.9, 129.0, 129.1, 137.6	$\begin{aligned} & 117.5, \\ & 133.8 \end{aligned}$
$9 \mathrm{~b}^{\text {a }}$	145.1	150.4	122.0	154.3	140.0	$\begin{aligned} & 55.0 \\ & 70.5 \end{aligned}$	78.0	$\begin{aligned} & \text { 127.5, 127.7, 128.1, 128.7, 129.3, 129.5, } \\ & \text { 138.3, 138.7 } \end{aligned}$	---
10a	153.2	151.7	119.9	154.2	128.4	$\begin{aligned} & 50.4 \\ & 69.9 \end{aligned}$	78.7	126.8, 128.8, 128.9, 138.3	$\begin{aligned} & 116.9, \\ & 134.1 \end{aligned}$
10b	153.1	151.6	119.9	154.1	128.4	$\begin{aligned} & 50.5, \\ & 70.7 \end{aligned}$	77.8	$\begin{aligned} & 127.0,127.6,127.7,128.3,128.8, \\ & 129.0137 .5,138.2 \end{aligned}$	---
11a	143.9	151.3	122.3	152.8	141.5	$\begin{aligned} & 68.9, \\ & 72.7 \end{aligned}$	62.1	128.5, 129.3, 129.4, 135.4	$\begin{aligned} & 118.3, \\ & 133.7 \end{aligned}$
11b	142.8	151.3	122.3	152.8	141.8	$\begin{aligned} & 68.8 \\ & 73.8 \end{aligned}$	62.1	$\begin{aligned} & 128.0,128.5,128.7,129.3,129.4,135.2, \\ & 137.1 \end{aligned}$	---
12a	152.7	151.8	120.3	154.6	128.4	$\begin{aligned} & 69.2, \\ & 72.2 \end{aligned}$	62.4	127.8, 128.7, 129.0, 136.1	$\begin{aligned} & 117.6, \\ & 134.2 \end{aligned}$
12b	152.7	151.9	120.3	154.3	128.7	$\begin{aligned} & 69.0, \\ & 73.2 \end{aligned}$	62.5	$\begin{aligned} & 127.8,127.85,127.9,128.5,128.7,129.0, \\ & 136.1,137.7 \end{aligned}$	---
$13{ }^{\text {a }}$	143.9	149.7	120.3	155.0	152.3	56.4	69.5	125.9, 127.5, 128.3, 142.1	---
$14^{\text {a }}$	143.2	150.4	121.1	155.3	152.7	61.2	65.9	128.1, 128.7, 129.1, 137.5	---
$15^{\text {a }}$	153.1	150.5	119.5	156.7	139.9	63.1	61.1	127.8, 128.7, 129.4, 138.9	---

The position of the alkyl at the purine moiety was determined unequivocally by 2 D NMR experiments. Parameters were set to show interactions $J \approx 7 \mathrm{~Hz}$ corresponding to three-bond $\mathrm{C}-\mathrm{H}$ coupling constants on the heteroaromatic ring. Protons of NCH_{2} or $\mathrm{NCH}-\mathrm{CH}_{2}$ showed cross-peaks with corresponding carbons of the purine rings. To assign $2-H$ and $8-H$ protons in the adenine derivatives unequivocally, their single bond C-H correlation in HMQC was not sufficient because corresponding carbon signals were very close. In HMBC, 2-H protons showed cross-peaks with both C-4 and C-6 and, similarly, 8-H protons correlated with C-4 and C-5. In all cases the resonances of $2-H$ was found at lower field values ($8.14-8.56 \mathrm{ppm}$) than those of $8-H(7.70-8.10$ $\mathrm{ppm})$. This is in agreement with an earlier observation of Kjellberg and Johansson [21].

EXPERIMENTAL

Column chromatography was performed on silica gel 60 purchased from Fluka, particle size $0.063-0.200 \mathrm{~mm}$. For thinlayer chromatography Merck Silica gel $60 \mathrm{~F}_{254}$ plates were used. Dimethylformamide (DMF) was dried by vacuum distillation from phosphorus pentoxide and stored over molecular sieves. Other chemicals obtained from commercial sources were of
analytical or synthetic grade and were used as received. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with Bruker Avance DRX500 (500 MHz for ${ }^{1} \mathrm{H}$) or with Varian Mercury 300 (300 MHz for ${ }^{1}$ H) Fourier transform NMR spectrometer. Mass spectra were measured on a triple quadrupole HPLC-MS system Varian 1200 equipped with electrospray ionization (ESI) in the positive ion mode.

Starting Materials. 8-Bromoadenine (8) was prepared by bromination of adenine in aqueous solution [22]. Alkylating reagents, i.e., 2-bromo-1-phenylethanol (2) [23], allyl(2-bromo-1-phenylethyl) ether (2a) [11], allyl(2-bromo-2-phenylethyl) ether (3a) [11], benzyl(2-bromo-1-phenylethyl) ether (2b) [11], benzyl(2-bromo-2-phenylethyl) ether (3b) [24] and 2-benzyl-oxy-2-phenylethyl triflate (4) [12] were prepared according to published procedures.

Alkylation of adenine with 2-bromo-1-phenylethanol (2). A mixture of $200 \mathrm{mg}(1.48 \mathrm{mmol})$ of adenine, 205 mg (1.28 $\mathrm{mmol})$ of potassium carbonate, $300 \mathrm{mg}(1.14 \mathrm{mmol})$ of $18-$ crown-6 and $607 \mathrm{mg}(3 \mathrm{mmol})$ of bromohydrin $\mathbf{2}$ in 20 mL of DMF was heated to $125^{\circ} \mathrm{C}$ for 20 h under dry nitrogen. Three products $\mathrm{R}_{\mathrm{f}}=0.49,0.39$ and 0.34 were detected by TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 6: 1\right)$. The reaction mixture was evaporated to dryness and separated by repeated column chromatography on silica gel.

9-(2-Hydroxy-2-phenylethyl)adenine (5). This compound was obtained by alkylation of adenine with $2(109 \mathrm{mg}, 29 \%)$ and also by deallylation of a 3:1 mixture of $\mathbf{9 a}$ and $\mathbf{1 0 a}(150 \mathrm{mg}, 0.4$ mmol). Repeated column chromatography yielded $22 \mathrm{mg}(87 \%)$
of a white powder, $\mathrm{mp}>250^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 6: 1\right)=0.49$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.98(\mathrm{~m}, 1 \mathrm{H}$, PhCH); 5.79 (d, 1H, J = $4.6 \mathrm{~Hz}, \mathrm{OH}$); 7.16 (br, 2H, NH_{2}); 7.27 (m, 1H, Ph); 7,35 (m, 4H, Ph); 7.98 (s, 1H, 8-H); 8.14 (s, 1H, 2H); HMBC: Cross-peak of NCH_{2} at $\delta=4.26 \mathrm{ppm}$ with $\mathrm{C}-8$ at 142.4 ppm and $C-4$ at 149.6 ppm ; ESI-MS: m/z $=256[\mathrm{M}+\mathrm{H}]^{+}$, $278[\mathrm{M}+\mathrm{Na}]^{+}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 61.2 ; \mathrm{H}, 5.1 ; \mathrm{N}$, 27.4. Found: C, 60.9; H, 5.2; N, 27.3.

Alkylation of Adenine with Allyl or Benzyl (2-Bromo-2phenylethyl) Ether (3a or 3b). Adenine ($200 \mathrm{mg}, 1.49 \mathrm{mmol}$), $\mathrm{NaH}(36 \mathrm{mg}, 1.4 \mathrm{mmol})$ and alkylating reagent $\mathbf{3 a}$ or $\mathbf{3 b}(2.2$ mmol) were added to 15 mL of DMF. The reaction mixture was stirred under a dry nitrogen atmosphere for two weeks at room temperature, then it was diluted with 15 mL of chloroform, the undissolved portion was filtered off, and the filtrate was evaporated to dryness in vacuo and separated by repeated column chromatography on silica gel using 10:1 and 6:1 $\mathrm{CHCl}_{3}{ }^{-}$ MeOH as an eluent.

9-(2-Allyloxy-1-phenylethyl)adenine (6a). A white powder obtained by alkylation of adenine with 3a, crystallized from chloroform - cyclohexane, $87 \mathrm{mg}(20 \%)$, mp $158-160^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 6: 1\right)=0.50 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}$ $\left.=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.05\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5\right.$ and $\left.4.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}\right)$, $4.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5\right.$ and $\left.6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}\right) ; 5.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.9.1 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right)$; $5.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.94$ (dd, $1 \mathrm{H}, \mathrm{J}=6.9$ and $4.4 \mathrm{~Hz}, \mathrm{NCH}$); $6.2\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 7.30(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) ; 8.00$ (s, 1H, 8-H), 8.33 (s, 1H, 2-H); HMBC: Crosspeaks of NCH at $\delta=5.94 \mathrm{ppm}$ with $C-8$ at 139.7 ppm and $C-4$ at 152.4 ppm were detected. ESI-MS: m/z $296[\mathrm{M}+\mathrm{H}]^{+}, 318$ $[\mathrm{M}+\mathrm{Na}]^{+}$and $334[\mathrm{M}+\mathrm{K}]^{+}$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O} \times 1 / 4$ $\mathrm{H}_{2} \mathrm{O}$: calc. C, 64.1; H, 5.9; N, 23.7; Found: C, 64.2; H, 5.8; N, 23.3.

7-(2-Allyloxy-1-phenylethyl)adenine (7a). A minor product of the alkylation of adenine with 3a obtained by repeated column chromatography and crystallization from chloroform as a white powder, $37 \mathrm{mg}(8 \%), \mathrm{mp} 189-191^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\right.$ $\mathrm{MeOH} 6: 1)=0.39$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$; 4.19 (dd, $1 \mathrm{H}, J=10.5$ and $8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}$), 4.21 (dd, $1 \mathrm{H}, J=$ 10.5 and $3.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}$); 5.19 (m, 2H, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.82$ (dd, $1 \mathrm{H}, J=7.7$ and $3.9 \mathrm{~Hz}, \mathrm{NCH}) ; 7.20(\mathrm{~m}, 3 \mathrm{H}, ~ P h) ; 7.40(\mathrm{~m}, 2 \mathrm{H}$, Ph); 8.02 (s, 1H, 8-H); 8.43 (s, 1H, 2-H); HMBC: Cross-peaks of NCH at $\delta=5.82 \mathrm{ppm}$ with $C-8$ at 144.2 ppm and $C-5$ at 111.0 ppm were detected. ESI-MS: m/z $296[\mathrm{M}+\mathrm{H}]^{+}, 318[\mathrm{M}+\mathrm{Na}]^{+}$ and $334[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 65.1 ; \mathrm{H}, 5.8 ; \mathrm{N}$ 23.7; Found: C, 64.7; H, 5.7; N 23.3.

9-(2-Benzyloxy-1-phenylethyl)adenine (7b). This compound was obtained by alkylation of adenine with 3b. Repeated column chromatography followed by crystallization from chloroform cyclohexane yielded $94 \mathrm{mg}(18 \%)$ of a white powder, mp 197$194^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 1\right)=0.71 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $4.09\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.4\right.$ and $\left.4.4 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right) ; 4.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 10.4 and $\left.6.9 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right) ; 4.53$ and $4.58\left(\mathrm{~d}, 1+1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$; 5.59 (br, $2 \mathrm{H}, \mathrm{NH}_{2}$); 5.93 (dd, $1 \mathrm{H}, \mathrm{J}=6.9$ and $4.4 \mathrm{~Hz}, \mathrm{CHN}$); 7.19 (m, 2H, Ph); 7.30 (m, 8H, Ph); 7.98 (s, 1H, 8-H); 8.32 (s, $1 \mathrm{H}, 2-\mathrm{H})$; ESI-MS: m/z $346[\mathrm{M}+\mathrm{H}]^{+}, 368[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O} \times 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.7 ; \mathrm{H}, 5.6 ; \mathrm{N}, 20.0$; Found: C, 68.5; H, 5.8; N, 20.3.

7-(2-Benzyloxy-1-phenylethyl)adenine (7b). A minor product of the alkylation of adenine with $\mathbf{3 b}$. Repeated column chromatography and crystallization from chloroform cyclohexane yielded $59 \mathrm{mg}(11.5 \%)$ of a white powder, mp $211-215^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 1\right)=0.61 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$
$4.19\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.5\right.$ and $\left.8.2 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right) ; 4.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 10.5 and $\left.3.6 \mathrm{~Hz}, \mathrm{NCHCH}_{2}\right) ; 4.54$ and $4.59(\mathrm{~d}, 1+1 \mathrm{H}, \mathrm{J}=11.8$ $\left.\mathrm{Hz}, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 5.02\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 5.82(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.2$ and 3.6 $\mathrm{Hz}, \mathrm{CHN}$); 7.19 (m, 2H, Ph); 7.30 (m, 3H, Ph); 7.41 (m, 5H, $P h$); 8.03 (s, $1 \mathrm{H}, 8-H$); 8.46 (s, 1H, 2-H); ESI-MS: m/z 346 $[\mathrm{M}+\mathrm{H}]^{+}, 368[\mathrm{M}+\mathrm{Na}]^{+} ;$Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 69.5 ; \mathrm{H}$, 5.5 ; N, 20.3; Found: C, 69.2; H, 5.8; N, 20.3.

General Procedure for Alkylation of 8-Bromoadenine (8). A mixture of $250 \mathrm{mg}(1.17 \mathrm{mmol})$ of $\mathbf{8}, 242 \mathrm{mg}(1.75 \mathrm{mmol})$ of potassium carbonate, $2.34-7.02 \mathrm{mmol}$ of alkylating agent $\mathbf{2 a}$, $\mathbf{2 b}, \mathbf{3 a}$ or $\mathbf{3 b}$ and 10 mL of DMF was stirred under a nitrogen atmosphere at $50-100^{\circ} \mathrm{C}$ and the course of reaction was followed by TLC (Silica gel 60 F 254 , Merck, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ 8:1). After 4-72h, when the spot of $\mathbf{8}$ at $\mathrm{R}_{\mathrm{f}}=0.16$ disappeared, the solvent was distilled off in vacuo, the residue was resuspended in 25 mL of dichloromethane - ethyl acetate $2: 1$, poured onto a bed of 25 g silica gel (for flash chromatography) and eluted subsequently with 100 mL of dichloromethane, 80 mL of ethyl acetate and 80 mL of ethanol. Crude products, bromoadenines $\mathbf{9 a}, \mathbf{b}-\mathbf{1 2 a}, \mathbf{b}, 2$ for each alkylating reagent used, were eluted in the ethyl acetate fraction. They were analyzed by ${ }^{1} \mathrm{H}$-NMR to determine the ratio of N3:N9 substituted product by integration of corresponding $2-H$ signals and used directly in further reaction steps. Pure samples of $\mathbf{9 a , b} \mathbf{- 1 2 a , b}$ were obtained by column chromatography on silica gel followed by crystallization or by semi-preparative HPLC.

When triflate $\mathbf{4}$ was used as an alkylation reagent instead of protected bromohydrins, full conversion of bromoadenine $\mathbf{8}$ was achieved in 4 h at room temperature.

8-Bromo-3-(2-allyloxy-2-phenylethyl)adenine (9a) and 8-Bromo-9-(2-allyloxy-2-phenylethyl)adenine (10a). These compounds were obtained by alkylation of $\mathbf{8}$ by 2a. Crystallization of 350 mg of the crude product containing 7:2 mixture of 9a and 10a from dichloromethane - petroleum ether afforded 32 mg (12%) of $\mathbf{9 a}$. Remaining mixture of the two isomers was separated by semi-preparative HPLC on a 250×8 mm Watrex C18 column (50-80 \% MeOH, $27 \mathrm{~min} ; 80 \%$ MeOH for additional 5 min) affording analytical samples of pure 9a and 10a.

9a: White powder, mp $188-189^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 10: 1\right)=$ 044.; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.6$ and 5.9 Hz , $\left.\mathrm{OCH}_{2}\right) ; 3.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.6\right.$ and $\left.5.00 \mathrm{~Hz}, \mathrm{OCH}_{2}\right) ; 4.22(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=9.5 \mathrm{~Hz}$ and $\left.13.6 \mathrm{~Hz}, \mathrm{NCH}_{2}\right) ; 4.67(\mathrm{dd}, 1 \mathrm{H} \mathrm{J}=3.1 \mathrm{~Hz}$ and $13.63 \mathrm{~Hz}, \mathrm{NCH}_{2}$); $4.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2$ and $3.1 \mathrm{~Hz}, \mathrm{PhCH}) ; 5.05$ ($\mathrm{m}, 2 \mathrm{H} \mathrm{CH}=\mathrm{CH}_{2}$); $5.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 6.2-6.6(\mathrm{br}, 2 \mathrm{H}$, NH H_{2}); 7.25-7.38 (m, 5H, Ph); $7.99(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H})$; HMBC: Crosspeaks of $\mathrm{NCH}_{2}(\delta=4.22$ and 4.67 ppm$)$ with the signals of $C-2$ at 143.8 ppm and $C-4$ at 150.7 ppm as well as the cross-peak of 2-H $(\delta=7.99 \mathrm{ppm})$ with the signal of $\mathrm{CH}_{2} \mathrm{~N}$ at 55.8 ppm ; ESIMS (m/z): 374 and $376[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OBr} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.5 ; \mathrm{H}, 4.4$; N, 18.4; Found: C, 50.2 ; H, 4.0; N, 18.4.

10a: White powder, mp $151-153^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 10: 1\right)$ $=0.48 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right) ; 3.92(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right) ; 4.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.1\right.$ and $\left.4.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right) ; 4.49(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=14.1$ and $\left.8.8 \mathrm{~Hz}, \mathrm{NCH}_{2}\right) ; 4.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.8$ and 4.7 Hz , $\mathrm{PhCH}) ; 5.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) ; 5,61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.73$ (br, 2H, NH H_{2}; 7.27-7.40 (m, 5H, Ph); 8.34 (s, 1H, 2-H); HMBC: Cross-peaks of $\mathrm{N}-\mathrm{CH}_{2}(\delta=4.28$ and 4.49 ppm$)$ with the signals of $C-8$ at 128.4 ppm and $C-4$ at 151.6 ppm ; ESI-MS: m/z 374 and $376[\mathrm{M}+\mathrm{H}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OBr} .1 / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 50.2; H, 4.2; N, 18.4; Found: C, 50.5; H, 4.4; N, 18.4.

8-Bromo-3-(2-benzyloxy-2-phenylethyl)adenine (9b) and 8-Bromo-9-(2-benzyloxy-2-phenylethyl)adenine (10b). These compounds were obtained by alkylation of $\mathbf{8}$ either with $\mathbf{2 b}$ or with triflate 4. Pure analytical samples of $\mathbf{9 b}$ and $\mathbf{1 0 b}$ were obtained by semi-preparative HPLC on a $250 \times 8 \mathrm{~mm}$ Watrex C18 column using a methanol - water gradient (63-90 \% $\mathrm{MeOH}, 25 \mathrm{~min} ; 90 \% \mathrm{MeOH}$ for additional 10 min).

9b: White powder, mp $226-227^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right.$ 15:1:1) $=0.47 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta \quad 4.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 13.6 and $\left.3.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.6$ and 9.2 Hz , $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 4.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.2$ and $3.7 \mathrm{~Hz}, \mathrm{CHO}) ; 6.97(\mathrm{~m}, 2 \mathrm{H}$, Ph); 7.19 (m, 3H, Ph); 7.40 (m, 1H, Ph); 7.46 (m, 4H, Ph); 8.05 (br, 1H, NH) 8.22 (br, 1H, NH); 8.26 (s, 1H, 2-H); HMBC: Cross-peaks of $\mathrm{NCH}_{2}(\delta=4.43$ and 4.5 ppm$)$ with the signals of $C-2$ at $145 \mathrm{ppm}, C-4$ at 150 ppm and aromatic C at 138.7 ppm ; ESI-MS: m/z 424 and $426[\mathrm{M}+\mathrm{H}]^{+}, 446$ and $448[\mathrm{M}+\mathrm{Na}]^{+}, 346$ [M-Br] ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OBr} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.0 ; \mathrm{H}, 4.2$; N, 16.4; Found C, $56.4 ;$ H, $3.8 ;$ N, 16.5.

10b: White powder, mp $146-147^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\right.$ $\mathrm{MeOH} 15: 1: 1)=0.43 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right) 4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 14.2 and $\left.4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.2$ and 9.6 Hz , $\mathrm{CH}_{2} \mathrm{~N}$); 4.87 (dd, $\mathrm{J}=9.7$ and $4.1 \mathrm{~Hz}, \mathrm{CHO}$); 5.6 (br, 2H, NH_{2}); 6.92 (m, 2H, Ph); 7.14 (m, 3H, Ph); 7.42 (m, 5H, Ph); 8.27 (s, $1 \mathrm{H}, 2-H)$; HMBC: Cross-peaks of $\mathrm{NCH}_{2}(\delta=4.25$ and 4.50 ppm) with the signals of $C-8$ at 128.4 ppm and $C-4$ at 151.6 ppm; ESI-MS: m/z 424 and $426[\mathrm{M}+\mathrm{H}]^{+}, 446$ and $448[\mathrm{M}+\mathrm{Na}]^{+}$, 346 [M-Br] ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OBr} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.0$; H , 4.2; N, 16.4; Found: C, 56.2; H, 4.2; N, 16.3.

8-Bromo-3-(2-allyloxy-1-phenylethyl)adenine (11a) and 8-Bromo-9-(2-allyloxy-1-phenylethyl)adenine (12a). These compounds were obtained by alkylation of $\mathbf{8}$ with 3a. Separation by semi-preparative HPLC on a $250 \times 8 \mathrm{~mm}$ Watrex C18 column using a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ gradient $(50-80 \% \mathrm{MeOH}, 27$ $\mathrm{min} ; 80 \% \mathrm{MeOH}$ for additional 5 min) afforded analytical samples of pure compounds 11a and 12a.

11a: White powder, mp $158-160^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 1\right)=$ $0.53 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.00\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}-\right.$ CH_{2}) ; 4.10 (dd, $1 \mathrm{H} \mathrm{J}=10.9$ and $4.4 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{O}$); 4.40 (dd, $1 \mathrm{H}, \mathrm{J}=10.9$ and $\left.4.7 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{O}\right) ; 5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right)$; $5.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 6.29(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{NCH})$. HMBC: Cross-peaks of $\mathrm{NCH}(\delta=6.29 \mathrm{ppm})$ with the signals of $C-2$ at 144 ppm and $C-4$ at 151 ppm ; ESI-MS: m/z 374 and 376 $[\mathrm{M}+\mathrm{H}]^{+}, 396$ and $398[\mathrm{M}+\mathrm{Na}]^{+}, 412$ and $414[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OBr} . \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.0 ; \mathrm{H}, 4.6 ; \mathrm{N}, 17.9$; Found C, 48.9; H, 4.2; N, 17.7.

12a: White powder, $\mathrm{mp}>250^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 1\right)=$ $0.53 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.00\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}-\right.$ $\left.\mathrm{CH}_{2}\right) ; 4.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.2\right.$ and $\left.5.1 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{O}\right) ; 5.04(\mathrm{t}$, $\left.1 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}, \mathrm{NCHCH}_{2} \mathrm{O}\right) ; 5.11(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18\right.$ and $\left.1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.76(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10$ and $5 \mathrm{~Hz}, \mathrm{NCH})$; ESI-MS: $\mathrm{m} / \mathrm{z} 374$ and $376[\mathrm{M}+\mathrm{H}]^{+}, 396$ and $398[\mathrm{M}+\mathrm{Na}]^{+}, 412$ and 414 $[\mathrm{M}+\mathrm{K}]^{+}$; Cross-peaks of $\mathrm{NCH}(\delta=5.87 \mathrm{ppm})$ with the signal of $C-4$ at 152 ppm and with aromatic $C \mathrm{H}$ overlapping $C-8$ at 128 ppm were observed. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{OBr}$: C, 51.4 ; H, 4.3; N, 18.7; Found C, 51.5, H, 4.6; N, 18.3.

8-Bromo-3-(2-benzyloxy-1-phenylethyl)adenine (11b) and 8-Bromo-9-(2-benzyloxy-1-phenylethyl)adenine (12b). These compounds were obtained by alkylation of $\mathbf{8}$ with $\mathbf{3 b}$. Repeated column chromatography of the crude product on silica gel (32 g)
with $\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH} 15: 1: 1$ as an eluent yielded 40 mg (8%) of $\mathbf{1 1 b}$ and $25 \mathrm{mg}(5 \%)$ of $\mathbf{1 2 b}$.

11b: White solid, $\mathrm{mp}>250^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right.$ $15: 1: 1)=0.21 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.16(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.8$ and $\left.4.3 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right) ; 4.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.8$ and 4.6 Hz , $\left.\mathrm{CHCH}_{2} \mathrm{O}\right) ; 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 6.29(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}$, $\mathrm{NCH}) ; 7.19(\mathrm{~m}, 2 \mathrm{H}, P h) ; 7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}) ; 7.38(\mathrm{~m}, 3 \mathrm{H}, P h)$; $7.42(\mathrm{~m}, 2 \mathrm{H}, P h) ; 8.00(\mathrm{~s}, 1 \mathrm{H}, 2-H) ; \mathrm{HMBC}$: Cross-peaks of $\mathrm{NCH}(\delta=6.29 \mathrm{ppm})$ with the signals of $C-2$ at 143 ppm and $C-4$ at 151 ppm ; ESI-MS: m/z 424 and $426[\mathrm{M}+\mathrm{H}]^{+}, 446$ and 448 $[\mathrm{M}+\mathrm{Na}]^{+}, 462$ and $464 \quad[\mathrm{M}+\mathrm{K}]^{+} ;$Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OBr} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.0 ; \mathrm{H}, 4.2 ; \mathrm{N}, 16.4$; Found: C, 56.2; H, 4.5; N, 16.6.

12b: White solid, mp $>250^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}\right.$ 15:1:1) $=0.15 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.15(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10$ and 5 $\left.\mathrm{Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right) ; 5.09\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right) ; 4.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $\left.=12.1 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 4.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{O}\right) ; 5.7$ (br $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{NH} \mathrm{N}_{2}\right) ; 5.89(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5 \mathrm{~Hz}, \mathrm{NCH}) ; 7.13(\mathrm{~m}, 2 \mathrm{H}, P h) ; 7.25$ (m, 4H, Ph); $7.32(\mathrm{~m}, 4 \mathrm{H}, P h) ; 7.47(\mathrm{~m}, 2 \mathrm{H}, P h) ; 8.26(\mathrm{~s}, 1 \mathrm{H}, 2-$ $H)$; HMBC: Cross-peaks of $\mathrm{NCH}(\delta=5.89 \mathrm{ppm})$ with the signals of $C-8$ at 128.7 ppm and $C-4$ at $151.9 \mathrm{ppm} ;$ ESI-MS: m/z 424 and $426[\mathrm{M}+\mathrm{H}]^{+}, 446$ and $448[\mathrm{M}+\mathrm{Na}]^{+}, 462$ and 464 $[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{OBr} .1 / 4 \mathrm{H}_{2} 0: \mathrm{C}, 56.0 ; \mathrm{H}, 4.2$; N, 16.4; Found C, 56.0; H, 4.1; N, 16.2.

General Procedure for Debenzylation. Palladium catalyst $(750 \mathrm{mg}, 10 \% \mathrm{Pd}-\mathrm{C}$, Degusa type, wet, containing approx. 50% of water) was activated by heating to $100^{\circ} \mathrm{C}$ for 1 h in vacuo. Argon was introduced into the reaction flask with the activated catalyst, $400 \mathrm{mg}(6.35 \mathrm{mmol})$ of ammonium formate and a solution of $150 \mathrm{mg}(0.353 \mathrm{mmol})$ of a bezyl protected compound $(9 b, 10 b, 12 b$, a mixture $9 b$ and $10 b$ or $11 b$ and 12b) in absolute $\mathrm{MeOH}(20 \mathrm{~mL})$ was added. The reaction mixture was heated in an oil bath to $60^{\circ} \mathrm{C}$ under an argon atmosphere. After 1 h another portion of $400 \mathrm{mg}(6.35 \mathrm{mmol})$ of ammonium formate was added and the reaction was continued for an additional 1 h . The catalyst was filtered off and washed with aqueous MeOH . The solvents were evaporated in vacuo to yield crude products.

General Procedure for Deallylation. To a stirred solution of $150 \mathrm{mg}(0.4 \mathrm{mmol})$ of an allyl-protected adenine derivative (pure 9a, 11a or a mixture of either $9 \mathbf{a}+11 \mathbf{a}$ or $10 \mathbf{a}+12 \mathbf{a}$) in DMF (10 mL) under an argon atmosphere, $150 \mathrm{mg}(0.8 \mathrm{mmol})$ of TsOH monohydrate, $14 \mathrm{mg}(0.012 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $100 \mu \mathrm{~L}$ of PMHS was added and the reaction mixture was heated to $90^{\circ} \mathrm{C}$. After 3 and 6 h additional portions of PMHS were added $(2 \times 100 \mu \mathrm{~L})$. When the reaction was complete (after 9-20 h), the solvent was evaporated in vacuo and the products were isolated by repeated column chromatography. For deallylation of guanine derivatives 15a-18a (125 mg; 0.4 mmol) lower amounts of $\mathrm{TsOH}(75 \mathrm{mg} ; 0.4 \mathrm{mmol})$ and PMHS $(100 \mu \mathrm{~L})$ were used. Full conversion of the starting material was achieved in 3 h . Resulting alkylguanines were purified by column chromatography on silica gel followed by anion exchange on Dowex 1 to remove coeluting TsOH.

3-(2-Hydroxy-2-phenylethyl)adenine (13). Deallylation of 9a followed by crystallization from ethanol yielded 56 mg (55 $\%$) of 13. Deallylation of a $3: 1$ mixture of 9 a and 10 a followed by repeated column chromatography yielded 25 mg (24\%) of $\mathbf{1 3}$ (the yield corrected to the content of $9 \mathbf{a}$ in the starting material). Also obtained by debenzylation of 100 mg of $\mathbf{9 b}$ and purification by column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 3: 1\right)$ as a white powder, $33 \mathrm{mg}(55 \%), \mathrm{mp}>250^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$ $8: 1)=0.15 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta 4.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.5$ and
9.4 Hz, $\left.\mathrm{CH}_{2}\right) ; 4.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.5\right.$ and $\left.3.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ; 5.1(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHOH}): 5.9(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}) ; 7.23-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; 8.18$ (s, $1 \mathrm{H}, 2-H) ; 7.78(\mathrm{~s}, 1 \mathrm{H}, 8-H)$; HMQC: Cross-peaks of $2-H$ at $\delta=$ 8.18 ppm with $C-2$ at 144 ppm and $8-H$ at $\delta=7.78 \mathrm{ppm}$ with C 8 at 152 ppm ; HMBC: Cross-peaks of $\mathrm{NCH}_{2}(\delta=4.23$ and 4.48 ppm) with $C-2$ at 144 ppm and with $C-4$ at 149.7 ppm ; ESI-MS: $\mathrm{m} / \mathrm{z} 256[\mathrm{M}+\mathrm{H}]^{+}, 278[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}$, 61.2; H, 5.1; N, 27.4; Found C, 60.8; H, 5.1; N, 27.3.

3-(2-Hydroxy-1-phenylethyl)adenine (14). This compound was obtained by deallylation of $\mathbf{1 2 a}(45 \%)$ and of a $2: 1$ mixture of 11a and 12a $(150 \mathrm{mg}, 0.4 \mathrm{mmol})$. Repeated column chromatography followed by crystallization from hot aqueous ethanol yielded 23 mg (33%) of $\mathbf{1 4}$ (the yield corrected to the content of 11a in the starting material) as a white powder, $\mathrm{mp}>$ $250{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 6: 1\right)=0.29 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $4.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.3\right.$ and $\left.3.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.60(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right) ; 5.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.1$ and $5 \mathrm{~Hz}, \mathrm{CHN}) ; 5.45(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}) ; 7.30(\mathrm{~m}, 3 \mathrm{H}, P h) ; 7.45(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.0$ and $1.5 \mathrm{~Hz}, P h)$; 7.90 (br, 2H, NH2); $7.70(\mathrm{~s}, 1 \mathrm{H}, 8-H) ; 8.56(\mathrm{~s}, 2-H) ; \mathrm{HMBC}$: Cross-peaks of $\mathrm{CHN}(\delta=5.92 \mathrm{ppm})$ with $C-2$ at 143.2 and with $C-4$ at 150.4; ESI-MS: m/z $256[\mathrm{M}+\mathrm{H}]^{+}, 278[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 61.2 ; \mathrm{H}, 5.1 ;$ N. 27.4; Found: C, 60.9; H, 5.1; N, 27.3.

9-(2-Hydroxy-1-phenylethyl)adenine (6) [25]. This compound was obtained by deallylation of a $2: 1$ mixture (150 $\mathrm{mg} ; 0.4 \mathrm{mmol}$) of 11a and 12a. Separation of the crude product by column chromatography yielded 19 mg (57%) of $\mathbf{1 5}$. Alternatively, debenzylation of $150 \mathrm{mg}(0.353 \mathrm{mmol})$ of a $1: 1$ mixture of 11a and 12a followed by separation on a silica gel column using $\mathrm{CHCl}_{3}-\mathrm{MeOH} 4: 1$ as an eluent yielded 15 mg (62%) of adenine and 28 mg (62%) of $\mathbf{1 5}$ as a white powder, mp $>250{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH} 8: 1\right)=0.32 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right)$: $\delta 4.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 5.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=8.9$ and $\left.4.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 5.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{OH}) ; 7.30(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}) ; 7.22\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ; 8.10(\mathrm{~s}, 1 \mathrm{H}, 8-H) ; 8.41(\mathrm{~s}, 1 \mathrm{H}, 2-$ H); ESI-MS: m/z $256[\mathrm{M}+\mathrm{H}]^{+}, 278[\mathrm{M}+\mathrm{Na}]^{+}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O} .1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.1$; H, 5.2; N, 27.0; Found: C, 59.9; H, 5.1; N, 27.0.

9-(2-Hydroxy-1-phenylethyl)guanine (18). This compound was obtained by deallylation of $\mathbf{1 8 a}$ ($78 \mathrm{mg} ; 0.25 \mathrm{mmol}$). Reaction mixture was evaporated to dryness in vacuo, the residue was re-suspended in $\mathrm{CHCl}_{3}-\mathrm{MeOH} 3: 1$ and poured onto a silica gel bed $(10 \mathrm{~g})$. Elution with $\mathrm{CHCl}_{3}-\mathrm{MeOH} 3: 1$ yielded a product, which was contaminated with TsOH . Pure $\mathbf{1 8}$ was obtained by crystallization from $\mathrm{MeOH}-\mathrm{CHCl}_{3}(20 \mathrm{mg}, 29 \%)$. Another portion, 30 mg of the product was obtained by separation on Dowex 1 anion exchange resin (3g). Total yield was $50 \mathrm{mg}(74 \%)$ of a white powder, $\mathrm{mp}>250^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}\right.$ $\mathrm{MeOH})=0.19 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 3.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$; $4.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 5.25(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{OH}) ; 5.44(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=8.7$ and $5.1 \mathrm{~Hz}, \mathrm{CHN}) ; 6.37(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}) ; 7.28(\mathrm{~m}, 5 \mathrm{H}$, Ph); $7.94(\mathrm{~s}, 1 \mathrm{H}, 8-H) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): 60.6(\mathrm{CHN}) ; 63.2$
$\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 105.0(\mathrm{C} 5) ; 127.5,128.3$ and $129.3(\mathrm{Ar} \mathrm{CH}) ; 138.7(\mathrm{C})$; 152.0 (C2); 154.4 (C4); 157.0 (C6); ESI-MS: m/z $272[\mathrm{M}+\mathrm{H}]^{+}$, $294[\mathrm{M}+\mathrm{Na}]^{+}, 310[\mathrm{M}+\mathrm{K}]^{+}$; Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 57.6; H, 4.8; N, 25.8; Found: C, 57.4; H, 4.9; N, 25.5.

Acknowledgement. The financial support by grants No. 203/06/0888 from the Grant Agency of the Czech Republic and grants MSM 6046137301 and LC06070 from the Ministry of Education of the Czech Republic is gratefully acknowledged.

REFERENCES

[1] Kimura, K.-I.; Bugg, T.D.H. Nat. Prod. Rep. 2003, 20, 252.
[2] Shuker, D.B.G.; Farmer, P.B. Chem. Res. Toxicol. 1995, 5, 450.
[3] Gluesenkamp, K.-H.; Krueger, K.; Eberle, G.; Drosdziok, W.;E. Jaehde, E.; Gruendel, O.; Neuhaus, A.; Boese, R.; Stellberg P.; Rajewsky, M.F. Angew. Chem. Int. Ed. Engl. 1993, 32, 1640.
[4] Koskinen, M.; Vodicka, P.; Hemminki, K. Chem.-Biol. Interact. 2000, 124, 13.
[5] K. Savela, A. Hesso and K. Hemminki, Chem.-Biol. Interact. 1986, 60, 235.
[6] Qian, C.; Dipple, A Chem. Res. Toxicol. 1995, 8, 389.
[7] Holy, A. Collection Czech. Chem. Commun. 1978, 43, 3103.
[8] Rasmussen M.; Hope, J.M. Aust. J. Chem. 1982, 35, 525.
[9] Platzer, N.; Galons, H.; Bensaïd, Y.; Miocque, M.; Bram, G. Tetrahedron 1987, 43, 2101.
[10] Novák, J.; Linhart, I.; Dvořáková, H.; Kubelka, V. Org. Lett. 2003, 5, 637.
[11] Novák, J.; Linhart, I.; Dvořáková, H. Eur. J. Org. Chem. 2004, 2738.
[12] Christoffers, J.; Roessler, U. J. Prakt. Chem. 2000, 342, 654.
[13a] Fujii, T.; Walker, G.C.; Leonard, N.J.; DeLong, D.C.; Gerzon, K. J. Med. Chem. 1979, 22, 125. [b] Seley, K.L.; Mosley, S.L.; Zeng, F.Org. Lett. 2003, 5, 4401.
[14] Li, X.; Vince, R. Bioorg. Med. Chem. 2006, 14, 5742.
[15] Jones, J.B.; Young, J.M. Can. J. Chem. 1970, 48, 1566.
[16] Thomas, R.M.; Mohan, G.H.; Iyengar, D.S. Tetrahedron Lett. 1997, 38, 4721.
[17] Dahlén, A.; Sundgren, A.; Lahmann, M.; Oscarson S.; Hilmersson, G.Org. Lett. 2003, 5, 4085.
[18] Taniguchi, T.; Ogasawara, K. Angew. Chem. 1998, 110, 1137.
[19] Dessolin, M.; Guillerez, M; Thieriet, N.; Guibé F.; Loffet, A. Tetreahedron Lett. 1995, 36, 5741.
[20] Chandrasekhar, S.; Reddy, C.R.; Rao, R.J. Tetrahedron 2001, 57, 3435.
[21] Kjellberg, J.; Johansson, N.G. Tetrahedron 1986, 42, 6541.
[22] Laxer, A.; Major, D.T.; Gottlieb, H.E.; Fischer, B. J. Org. Chem. 2001, 66, 5463.
[23] Yoon, U.C.; Kim, D.U.; Lee, C.W.; Choi, Y.S.; Lee, Y.-J.; Ammon, H.L.; Mariano, P.S. J. Am. Chem. Soc. 1995, 117, 2698.
[24] Baker, T.M.;Bodwell, G.J.; Davies, S.G.; Edwards, A.J.; Metzler, M.R. Tetrahedron 1993, 49, 5635.
[25] Schaeffer, H.J.; Johnson, R.N.; Schwartz, M.A.; Schwender, C.F. J. Med. Chem.1972, 15, 456.

[^0]: Scheme 3

 (i) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{TsOH}, \mathrm{PMHS}$, DMF; (ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$

